7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.4049/jimmunol.1100468
Copy DOIJournal: The Journal of Immunology | Publication Date: Sep 1, 2011 |
Citations: 19 |
Murine Tcra and Tcrd gene segments are organized into a single genetic locus (Tcra/Tcrd locus) that undergoes V(D)J recombination in CD4(-)CD8(-) double-negative (DN) thymocytes to assemble Tcrd genes and in CD4(+)CD8(+) double-positive thymocytes to assemble Tcra genes. Recombination events are regulated by two developmental stage-specific enhancers, E(δ) and E(α). Effects of E(α) on Trca/Tcrd locus chromatin have been well documented, but effects of E(δ) have not. In this regard, E(α) acts over long distances to activate many V(α) and J(α) segments for recombination in double-positive thymocytes. However, in DN thymocytes, it is unclear whether E(δ) functions over long distances to regulate V(δ) gene segments or functions only locally to regulate D(δ) and J(δ) gene segments. In this study, we analyzed germline transcription, histone modifications, and recombination on wild-type and E(δ)-deficient alleles in adult and fetal thymocytes. We found that E(δ) functions as a local enhancer whose influence is limited to no more than ∼10 kb in either direction (including D(δ), J(δ), and TRDV5 gene segments) in adult DN thymocytes. However, we identified a unique long-distance role for E(δ) promoting accessibility and recombination of fetal V(δ) gene segment TRDV4, over a distance of 55 kb, in fetal thymocytes. TRDV4 recombination is specifically repressed in adult thymocytes. We found that this repression is enforced by a developmentally regulated loss of histone acetylation. Constitutively high levels of a suppressive modification, histone H3 lysine 9 dimethylation, may contribute to repression as well.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.