Abstract

The multiple-minima problem is a classical problem in molecular structure prediction. For ligand-receptor systems, a possible direction to alleviate this major obstacle is to simplify the objective function (intermolecular energy) and smooth its profile. We introduce long-distance atom-atom potentials for ligand-receptor interactions. The longer ranges result in averaging of the energy potential at a given point. Our simplified force field is based on a trivial empirical representation of interatomic interactions as a step function. We demonstrate that the intermolecular energy calculation by a systematic search with such a simplified long-distance force field delivers the global minimum (crystallographically determined position of the ligand) by radically suppressing local minima (or false-positive fits). The effectiveness of the approach is demonstrated on different molecular complexes of known structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.