Abstract

A long-distance measurement system is proposed in this paper, which is based on optical sampling using a femtosecond fiber laser. The measurement principle and the importance of dispersion compensation are theoretically analyzed in the time domain. By sweeping the repetition rate periodically, stable cross-correlation patterns are acquired, and the unknown distance can be calculated from the interference information. A long optical delay line is placed in the signal path, which can eliminate the “dead zone” effect and improve the performance of long-range measurement. The experimental results show that the present system can realize an accuracy of 4 μm over a 60-m distance, corresponding to a relative precision of 6.7 × 10−8. The all-fiber optical path system provides a balance among long range, high resolution, and rapid measurement, with the potential for the development of instrumentation for precision engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.