Abstract
The long-range spin dependence of the qq interaction is considered in a model in which the confining potential is required to be the static limit of retarded scalar and vector potentials analogous to the Lienard-Wiechert potentials of classical electrodynamics. A generalization of Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-dependent interaction is found to be determined completely by only two potentials: namely, the static scalar and vector potentials. This is to be compared with the four potentials required in Eichten and Feinberg's general formulation. Two different solutions are allowed by Gromes's theorem. In one, the scalar potential can be linear; in the other, it must be logarithmic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.