Abstract

Efficient molecular recognition, in which recognition processes are occurring much faster than it takes to test variants, is only possible when long-distance recognition occurs together with contact interactions. The distance between interacting molecules should be sufficiently long to prevent hindrances to the search and, on the other hand, sufficiently short to provide selectivity. It was demonstrated that both of these two requirements can be satisfied simultaneously for biological macromolecules that include helical segments. Because the “diameters” of helical molecules are far shorter than their lengths, the intermolecular distance can be far greater than the diameters, thus allowing a free search. The distance can be far shorter than the lengths at the same time, thus providing selectivity. Analytical procedures were developed to estimate the parameters for protein–protein and protein–nucleic acid recognition. The coincidence of the charge-distribution periods in helical segments was found to substantially increase their interaction potential, and the reduction scale characteristic of the potential was shown to depend on the numerical value of the coinciding period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.