Abstract

We make use of room-temperature magnetostatic surface spin waves (MSSWs) to mediate the interaction between the microwave field from an antenna and the spin of nitrogen-vacancy (NV) centers in diamond. We show that this transport spans distances exceeding 3 mm, a manifestation of the MSSW robustness and large diffusion length. Using the NV spins as a local sensor, we find that the MSSW couples resonantly, and the NV spins amplitude grow linearly with the applied microwave power, suggesting that this approach could be extended to amplify the signal from neighboring spin qubits by several orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.