Abstract
This paper reports the first demonstration of the generation and distribution of time-bin entangled photon pairs in the 1.5-microm band using spontaneous four-wave mixing in a cooled fiber. Noise photons induced by spontaneous Raman scattering were suppressed by cooling a dispersion shifted fiber with liquid nitrogen, which resulted in a significant improvement in the visibility of two-photon interference. By using this scheme, time-bin entangled qubits were successfully distributed over 60 km of optical fiber with a visibility of 76%, which was obtained without removing accidental coincidences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.