Abstract

We investigate the main limitations which prevent the continuous-variable quantum key distribution protocols from achieving long distances in the finite-size setting. We propose a double-modulation protocol which allows using each state for both channel estimation and key distribution. As opposed to the standard method, we optimize the parameters of the protocol and consider squeezed as well as coherent states as a signal. By optimally combining the resources the key rate can approach the theoretical limit for long distances, and one can obtain about ten times higher key rate using ten times shorter block size than in the current state-of-the-art implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.