Abstract

The mechanism enabling coordination of the resistance of feed arteries with microcirculatory arterioles to rapidly regulate tissue blood flow in line with changes in metabolic demand has preoccupied scientists for a quarter of a century. As experiments uncovered the underlying electrical events, it was frequently questioned how vasodilation could conduct over long distances without appreciable attenuation. This perspective reviews the data pertinent to this phenomenon and provides evidence that this remarkable response could be made possible by a simple mechanism based on the steep relationship between membrane potential and calcium entry demonstrated by the voltage-dependent calcium channels which mediate the control of vascular tone in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.