Abstract

In this study, a long-distance phase-sensitive optical time domain reflectometry (Φ-OTDR) with a flexible frequency response based on time division multiplexing is proposed and experimentally demonstrated. Distributed flexible frequency vibration sensing over long distance can be realized by reconfiguring the system layout in a time-division-multiplexed manner by re-routing the Rayleigh backscattered signals for segmented processing with extra erbium-doped fiber amplifiers added only instead of any other complex signal amplification or pulse modulation mechanisms. Through time-division-multiplexed reconfiguration, the tradeoff between sensing distance and vibration frequency response in Φ-OTDR system is largely relieved. Compared with the traditional system layout, the proposed system allows a flexible frequency response in each sensing fiber segment without any crosstalk among them. In experiments, distributed vibration sensing with a frequency response up to 4.5 kHz is achieved over a sensing distance of 60km by the proposed system, which is not possible in a conventional Φ-OTDR system. Furthermore, the frequency response flexibility of the proposed system is further verified by successfully identifying a vibration event with a frequency of up to 20 kHz at the end of a 52-km-long fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.