Abstract

The purpose of this study was to investigate the potential of new positively charged solid lipid nanoparticles (SLN) to convey nucleic acids. The cationic character of SLN was obtained by adding as cationic molecules two different long-chain cationic phosphines (CP), namely hexadecyl-PTA iodide (CP16) and octadecyl-PTA iodide (CP18). The obtained CP-SLN are characterized by a positive charge on the surface and reproducible dimensions around 220nm. These nanosystems are able to efficiently bind nucleic acid molecules and to protect DNA from the activity of serum nucleases up to 120min. Lastly, in vitro experiments demonstrated that CP-SLN exhibit a quite pronounced antiproliferative effect on cultured human K562 erythroleukemic cells and a limited effect as transfecting adjuvant.These data, and particularly the ability of CP-SLN to protect DNA from degradation, encourages further studies aimed at proposing these nanosystems as a potential approach to deliver nucleic acid to cells in living organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.