Abstract

BackgroundSauropterygia is an abundant and successful group of Triassic marine reptiles. Phylogenetic relationships of Triassic Sauropterygia have always been unstable and recently questioned. Although specimens occur in high numbers, the main problems are rareness of diagnostic material from the Germanic Basin and uniformity of postcranial morphology of eosauropterygians. In the current paper, morphotypes of humeri along with their corresponding bone histologies for Lower to Middle Muschelkalk sauropterygians are described and interpreted for the first time in a phylogenetic context.Methodology/Principal Findings Nothosaurus shows a typical plesiomorphic lamellar-zonal bone type, but varying growth patterns and the occurrence of a new humerus morphotype point to a higher taxonomic diversity than was known. In contrast to the enormous morphological variability of eosauropterygian humeri not assigned to Nothosaurus, their long bone histology is relatively uniform and can be divided into two histotypes. Unexpectedly, both of these histotypes reveal abundant fibrolamellar bone throughout the cortex. This pushes the origin of fibrolamellar bone in Sauropterygia back from the Cretaceous to the early Middle Triassic (early Anisian). Histotype A is assigned to Cymatosaurus, a basal member of the Pistosauroidea, which includes the plesiosaurs as derived members. Histotype B is related to the pachypleurosaur Anarosaurus. Contrary to these new finds, the stratigraphically younger pachypleurosaur Neusticosaurus shows the plesiomorphic lamellar-zonal bone type and an incomplete endochondral ossification, like Nothosaurus.Conclusions/SignificanceHistological results hypothetically discussed in a phylogenetical context have a large impact on the current phylogenetic hypothesis of Sauropterygia, leaving the pachypleurosaurs polyphyletic. On the basis of histological data, Neusticosaurus would be related to Nothosaurus, whereas Anarosaurus would follow the pistosaur clade. Furthermore, the presence of fibrolamellar bone, which is accompanied with increased growth rates and presumably even with increased metabolic rates, already in Anarosaurus and Cymatosaurus can explain the success of the Pistosauroidea, the only sauropterygian group to survive into the Jurassic and give rise to the pelagic plesiosaur radiation.

Highlights

  • General Introduction Sauropterygians are a group of extinct, marine reptiles that invaded the sea in the Early Triassic and became extinct in the Late Cretaceous

  • This paper describes and compares different humeri morphotypes along with their corresponding bone histology of Lower Muschelkalk Sauropterygia, with a focus on eosauropterygians

  • In addition to its primary bone tissues, a bone type is characterized by the presence, density, and arrangement of blood vessels preserved as vascular canals in fossilized bone

Read more

Summary

Introduction

General Introduction Sauropterygians are a group of extinct, marine reptiles that invaded the sea in the Early Triassic and became extinct in the Late Cretaceous. They are diapsid reptiles and most likely belong to the Lepidosauromorpha [1]. In the Lower Muschelkalk (early Anisian, Middle Triassic), eosauropterygians were already the most common fossils in the Germanic Basin. They are represented by many individuals, as well as by a number of taxa [1,4,5,6,7,8]. Morphotypes of humeri along with their corresponding bone histologies for Lower to Middle Muschelkalk sauropterygians are described and interpreted for the first time in a phylogenetic context

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.