Abstract

An effective design of carbon materials with appropriate nanoarchitecture and optimized physicochemical property is critically demanded for superb lithium/sodium storage capacities. N-rich (up to 15.7%) hollow carbon nanotubes (NCNT) with long aspect ratio are well developed via a template method by exploring polypyrrole as the high nitrogen-containing carbon precursor. Owing to the hollow structure with large cavity and long aspect ratio, the NCNT exhibits Li+/Na+ storage capability with favorable volume buffer and rapid ion and electron transfer at high rate, resulting in long-term cycling and high-rate property. Meanwhile, the high N content creates abundant active sites and extrinsic defects, facilitating the improved specific capacity and rate performance. Impressively, our NCNT-600 electrode displays a favorable reversible capacity of 132 mAhg−1 after 5000 cycles at 4000 mA g−1 for SIBs and 170 mAhg−1 after 2000 cycles at the same current for LIBs. Further quantitative kinetic analysis reveals the dominated capacitive contribution of Li+/Na+ storage in NCNT, which is attributed to the porous hollow nanotubes and N-rich carbon with volume strain mitigation and enhanced electronic/ionic transfer capability. Given the cost-effectiveness and material sustainability, our work will shed light on the further design of other carbon-based materials for advanced energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call