Abstract
In nature, intact plant cells are subjected to freezing and can remain frozen for prolonged periods. We assayed the survival of Arabidopsis thaliana leaf cells following freezing and found that short- and long-term exposures produced different types of cellular injury. To identify the cause of these injuries, we examined the ultrastructure of the cell plasma membranes. Our results demonstrate that ultrastructural changes in the plasma membrane due to short-term freezing are associated with interbilayer events, including close apposition of the membranes. In both acclimated and non-acclimated leaf cells, these interbilayer events resulted in "fracture-jump lesions" in the plasma membrane. On the other hand, long-term freezing was associated with the development of extensive protein-free areas caused by the aggregation of intramembrane proteins with consequent vesiculation of the affected membrane regions; this effect was clearly different from the ultrastructural changes induced by interbilayer events. We also found that prolonged exposure of non-acclimated leaf cells to a concentrated electrolyte solution produced effects that were similar to those caused by long-term freezing, suggesting that the ultrastructural changes observed in the plasma membrane following long-term freezing are produced by exposure of the leaf cells to a concentrated electrolyte solution. This study illustrates multiple causes of freezing-induced injury in plant cells and may provide useful information regarding the functional role of the diverse changes that occur during cold acclimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.