Abstract

In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The charcoal formation rate was 1 to 8% of woody fuels consumed, and this percentage was negatively related to woody fuels consumed, resulting in less charcoal formation with greater fire severity. Charcoal C averaged 2000 kg ha−1 in 0–3 cm mineral soil and may have decreased as a result of fire, coincident with convective or erosive loss of mineral soil. Charcoal C in 3–15 cm mineral soil was stable at 5500 kg C ha−1. Long-term soil C sequestration in the Siskiyou LTEP soils is greatly influenced by the contribution of charcoal C, which makes up 20% of mineral soil organic C. This research reiterates the importance of fire to soil C in a southwestern Oregon coniferous forest ecosystem.

Highlights

  • Wildfires are predicted to become more prevalent and severe in the western United States as climate conditions shift towards warmer and drier fire seasons [1], indicating the need to better understand their impacts

  • Charcoal C concentration decreases from the surface (0–3 cm) to subsurface (3–15 cm) mineral soil (Table 1)

  • Soil properties and fuel loading were measured prior to the wildfire, which allowed for comparisons of forest treatments under wildfire conditions that are unique in current literature

Read more

Summary

Introduction

Wildfires are predicted to become more prevalent and severe in the western United States as climate conditions shift towards warmer and drier fire seasons [1], indicating the need to better understand their impacts. A byproduct of wildfires and prescribed fires, incorporated into a forest soil contributes to the long-term carbon (C) sequestration and numerous physical and chemical properties [4,5,6]. Soil charcoal is partially combusted organic material from biomass that is incorporated into the. Charcoal is a constituent of the black carbon continuum, which attempts to explain the range of variability in C of partially combusted vegetative material or fossil fuels [5,6]. It is enriched in C, depleted in nitrogen (N), and highly aromatic in structure [5,6]. Previous publications demonstrate increased soil water holding capacity, increased cation exchange capacity, increased pH, and reduced bulk density as a result of charcoal additions into forest mineral soils [4,5,6,7,8,9,10]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.