Abstract

The conformational and structural order of resistant starch type III made from cassava starch was studied. The gelatinized starch was debranched using pullulanase and then recrystallised by annealing, temperature-cycling or heat-moisture treatment. Subsequently, the recrystallised products were subjected to in vitro digestion using porcine pancreatic α-amylase and amyloglucosidase. The undigested and digested products were analyzed for polymer chain distribution, crystallinity, molecular order, structural conformations and thermal stability using high performance anion exchange chromatography, wide angle X-ray diffraction, Fourier transform infrared spectroscopy, 13C CP/MAS nuclear magnetic resonance and differential scanning calorimetry, respectively. Average degree of polymerisation increased from 20 to 22 glucose units upon digestion. Both the undigested and digested starches comprised mixtures of A, B and V crystalline types. Percentage of crystallinities by X-ray diffraction were 40.9%, 50.7% and 56.2% in annealed, temperature-cycled and heat-moisture treated starches, respectively. These values increased to 47.9%, 54.4% and 58.2%, respectively, in the digested products. The ordered fractions in the undigested annealed, temperature-cycled and heat-moisture treated starches were 69.3%, 71.4% and 79.2%, respectively, as determined by 13C CP/MAS nuclear magnetic resonance. However, the disordered phase was indistinct in the digested products although the contents of non-crystalline conformations were significantly ( p < 0.01) higher. The melting enthalpies of the digested residues increased by factors of 2.50 in annealed, 2.53 in temperature-cycled and 2.06 in heat-moisture treated starches, suggesting molecular rearrangement in a manner related to the enzyme susceptibility of the initial materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.