Abstract

Abstract We collect 133 fast radio bursts (FRBs), including 110 nonrepeating and 23 repeating ones, and systematically investigate their observational properties. To check the frequency dependence of FRB classifications, we define our samples with a central frequency below/above 1 GHz as subsample I/II. First, we find that there is a clear bimodal distribution of pulse width for subsample I. If we classify FRBs into short FRBs (sFRBs; <100 ms) and long FRBs (lFRBs; >100 ms) as done for short and long gamma-ray bursts (GRBs), the sFRBs at higher central frequency are commonly shorter than those at lower central frequency not only for nonrepeating but also repeating sFRBs. Second, we find that fluence and peak flux density are correlated with a power-law relation of F ∝ S p , obs γ for both sFRBs and lFRBs whose distributions are obviously different. Third, the lFRBs with isotropic energies ranging from 1042 to 1044 erg are more energetic than the sFRBs in the F–DM EX plane, indicating that they are two representative types. Finally, it is interesting to note that the peak flux density behaves independently on the redshift when the distance of the FRBs becomes far enough, which is similar to the scenario of the peak flux evolving with redshift in the field of GRBs. We predict that fainter FRBs at a higher redshift of z > 2 can be successfully detected by FAST and the Square Kilometre Array in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.