Abstract

Herein, we develop a strategy of matched spectral and temporal light management to improve photosynthetic efficiency by co-assembling natural thylakoid membrane (TM) with artificial long afterglow particle (LAP). To be specific, LAP with excellent stability and biocompatibility possesses the capabilities of light conversion and storage, optically-matched with the absorption of TM. These favorable features permit LAP as an additional well-functioned light source of photosynthesis performed by TM. As a consequence, enhanced photosynthesis is achieved after co-assembly, compared with pure TM. Under light, the rates of electron transfer, oxygen yield and adenosine triphosphate (ATP) production in this biohybrid architecture are boosted owing to down-conversion fluorescence emission from LAP. Under dark, persistent phosphorescence emission in charged LAP facilitates continual photosynthesis of TM, while that of pure TM almost stops immediately. This proof-of-concept work opens a new route to augment the photosynthetic efficiency of green plants by utilizing precise light-managed materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call