Abstract

As over 93% of the world's energy comes from thermal processes, new materials that maximize heat transfer or minimize heat waste are crucial to improving efficiency. Here we focus on fully dense electrical insulators at the low end of the spectrum of lattice thermal conductivity κL. We present an experimentally validated predictive tool that shows how the high deformability of lone-pair electron charge density can limit κL in crystalline materials. Using first-principles density-functional theory (DFT) calculations, we predict that several ABX2 (groups I–V–VI2) compounds based on the rocksalt structure develop soft phonon modes due to the strong hybridization and repulsion between the lone-pair electrons of the group V cations and the valence p orbitals of group VI anions. In many cases, this creates lattice instabilities and the compounds either do not exist or crystallize in a different structure. Marginally stable ABX2 compounds have anharmonic bonds that result in strong phonon–phonon interactions. We show experimentally how these can reduce κL to the amorphous limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.