Abstract
Interpenetration is an intrinsic behaviour for the porous coordination networks. To prevent the interpenetration, a common strategy is the imposition of geometric or steric restrictions by incorporating bulky moieties into organic tectons. So far, most of the available incorporations have been achieved through a covalent connection, while few involved in the non-covalent weak interactions. In this paper, we have reported that such interpenetration can be prevented by the less common lone pair-π interactions. By imposing the lone pair-π interactions through the addition of lone-pair-bearing N-methylpyrrolidin-2-one or iodine, combinations of rigid naphthalene diimide tectons bearing two divergently oriented pyridyl units at both imide extremities with ZnSiF6 led to non-interpenetrated cuboid 3-D coordination networks that should have been interpenetrated. In addition, such close-contacting lone pair-π interactions between electron donors and acceptors have also been demonstrated to play a key role in their photochromic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.