Abstract

Abstract In this study, we propose a novel local outlier detection approach - called LOMA - to mining local outliers in high-dimensional data sets. To improve the efficiency of outlier detection, LOMA prunes irrelevance attributes and objects in the data set by analyzing attribute relevance with a sparse factor threshold. Such a pruning technique substantially reduce the size of data sets. The core of LOMA is searching sparse subspace, which implements the particle swarm optimization method in reduced data sets. In the process of searching sparse subspace, we introduce the sparse coefficient threshold to represent sparse degrees of data objects in a subspace, where the data objects are considered as local outliers. The attribute relevance analysis provides a guidance for experts and users to identify useless attributes for detecting outliers. In addition, our sparse-subspace-based outlier algorithm is a novel technique for local-outlier detection in a wide variety of applications. Experimental results driven by both synthetic and UCI data sets validate the effectiveness and accuracy of our LOMA. In particular, LOMA achieves high mining efficiency and accuracy when the sparse factor threshold is set to a small value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.