Abstract

BackgroundPrecise connections of neural circuits can be specified by genetic programming. In the Drosophila olfactory system, projection neurons (PNs) send dendrites to single glomeruli in the antenna lobe (AL) based upon lineage and birth order and send axons with stereotyped terminations to higher olfactory centers. These decisions are likely specified by a PN-intrinsic transcriptional code that regulates the expression of cell-surface molecules to instruct wiring specificity.ResultsWe find that the loss of longitudinals lacking (lola), which encodes a BTB-Zn-finger transcription factor with 20 predicted splice isoforms, results in wiring defects in both axons and dendrites of all lineages of PNs. RNA in situ hybridization and quantitative RT-PCR suggest that most if not all lola isoforms are expressed in all PNs, but different isoforms are expressed at widely varying levels. Overexpression of individual lola isoforms fails to rescue the lola null phenotypes and causes additional phenotypes. Loss of lola also results in ectopic expression of Gal4 drivers in multiple cell types and in the loss of transcription factor gene lim1 expression in ventral PNs.ConclusionOur results indicate that lola is required for wiring of axons and dendrites of most PN classes, and suggest a need for its molecular diversity. Expression pattern changes of Gal4 drivers in lola-/- clones imply that lola normally represses the expression of these regulatory elements in a subset of the cells surrounding the AL. We propose that Lola functions as a general transcription factor that regulates the expression of multiple genes ultimately controlling PN identity and wiring specificity.

Highlights

  • Precise connections of neural circuits can be specified by genetic programming

  • We investigated the function of lola in wiring specificity of olfactory projection neurons (PNs) by using the MARCM system [30]

  • Lola is expressed in projection neurons and neuroblasts Using a specific antibody raised against the domain common to all Lola isoforms (Figure 1b), we found that Lola is expressed in all cells in the antennal lobe (AL) region at all stages of development from larva to adult (Figure 1c–g)

Read more

Summary

Introduction

In the Drosophila olfactory system, projection neurons (PNs) send dendrites to single glomeruli in the antenna lobe (AL) based upon lineage and birth order and send axons with stereotyped terminations to higher olfactory centers. These decisions are likely specified by a PN-intrinsic transcriptional code that regulates the expression of cell-surface molecules to instruct wiring specificity. Neural Development 2007, 2:14 http://www.neuraldevelopment.com/content/2/1/14 that dendrite target selection and aspects of synapse specificity can be precisely genetically programmed in flies [2] and vertebrates [3]. AdPNs are specified by birth order, suggesting that instructive information within a lineage determines wiring patterns [2]. PN dendritic patterning precedes ORN axon patterning: by the time pioneering ORN axons arrive at the developing AL, PN dendrites have already formed a coarse map by virtue of their specific dendritic targeting [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.