Abstract

BackgroundLoki zupa (Luooukezupa) decoction, consisting of the roots of Hyssopuscuspidatus Boriss (Shenxiangcao) and Irishalophila Pall root (Yuanweigen), is commonly used in Uygur medicine to treat asthma. However, the mode of action of this material has yet to be elucidated. This study aims to investigate the effects of Loki zupa decoction on the airway inflammation of an ovalbumin (OVA)-induced asthma mouse model.MethodsMice were divided into normal control (NC), asthma (A), high, medium and low doses of Loki zupa decoction (L 14.0, L 7.0, L 3.5), water extract (LW), n-butanol extract (LN), ethyl acetate extract (LE) and dexamethasone (DEX) groups. Antiasthmatic model was induced by OVA sensitization and challenged using BALB/c mice. Airway hyperresponsiveness (AHR) toward methacholine (Mch) was assessed using Buxco equipment. Lung inflammation was measured by hematoxylin and eosin staining and bronchoalveolar lavage fluid (BALF) cell count and classification. Inflammatory cytokines in BALF and serum were analyzed by Bio-Plex assay, and mRNA levels were investigated by qPCR analysis. The roots of H. Boriss (250 g) and I. Pall (250 g) were decocted, concentrated and diluted to 14.0, 7.0 and 3.5 g crude herb/kg body weight. The LW, LN and LE of the Loki zupa decoction were prepared and diluted to a dose equivalent to 7 g of crude herb/kg body weight.ResultsLoki zupa decoction and its extracts significantly attenuated the AHR towards Mch (all P < 0.05). Treatment with Loki zupa decoction and its extracts relieved the infiltration of inflammatory cells in and around the airways, and reduced the total white blood cell (all P < 0.05), neutrophil (all P < 0.05), monocyte (all P < 0.05) and eosinophil (all P < 0.05) counts in the BALF. The BALF samples collected from the mice treated with the Loki zupa decoction and its extracts had lower levels of IL-1β (all P < 0.05), TNF-α (all P < 0.05), IL-2 (all P < 0.05), IL-4 (P = 0.047) and IL-5 (all P < 0.05). The serum samples of these mice also had lower IL-1β (all P < 0.05), TNF-α (all P < 0.05), IL-4 (all P < 0.05) and IL-5 (all P < 0.05) levels and higher levels of IFN-γ (P < 0.001) compared with the OVA-induced asthma mouse model. qPCR analysis revealed that Loki zupa decoction and its extracts inhibited mRNA expression of IL-4 (all P < 0.05), IL-5 (all P < 0.05) and IL-13 (all P < 0.05) and promoted mRNA expression of IFN-γ (all P < 0.05) in asthmatic mice.ConclusionLoki zupa decoction reduced AHR, attenuated airway inflammation, promoted Th1 and suppressed Th2 cell functions in an OVA-induced asthma mouse model.Electronic supplementary materialThe online version of this article (doi:10.1186/s13020-016-0094-9) contains supplementary material, which is available to authorized users.

Highlights

  • Loki zupa (Luooukezupa) decoction, consisting of the roots of Hyssopuscuspidatus Boriss (Shenxiangcao) and Irishalophila Pall root (Yuanweigen), is commonly used in Uygur medicine to treat asthma

  • Airway hyperresponsiveness (AHR) of OVA‐induced asthmatic mice The results of this study showed that the short-term OVA challenge of mice with Mch led to a significant decrease in AHR in the airway resistance (RL) group compared with mice in the normal control (NC) group (P = 0.037, P = 0.003, P = 0.001; Fig. 2a)

  • Treatment of the mice with Loki zupa decoction or its extracts resulted in a significant decrease in the AHR of the RL group towards Mch compared with the OVA-induced asthmatic mice (P < 0.05; Fig. 2a)

Read more

Summary

Introduction

Loki zupa (Luooukezupa) decoction, consisting of the roots of Hyssopuscuspidatus Boriss (Shenxiangcao) and Irishalophila Pall root (Yuanweigen), is commonly used in Uygur medicine to treat asthma. This study aims to investigate the effects of Loki zupa decoction on the airway inflammation of an ovalbumin (OVA)-induced asthma mouse model. The Th2-driven inflammation of the eosinophilic airways is responsible for upto 50 % of all cases of asthma, and is generally considered to be the major pathogenetic factor in this disease [4,5,6]. It is well known that Th2-activated cells orchestrate pulmonary immune responses and mediate the inflammation of lung tissues, as well as airway hyperresponsiveness [8,9,10]. Th1-activated cells inhibit the inflammation of asthmatic airways [11]. The immunomodulation of the Th1/Th2 imbalance encountered in asthma patients is considered to be a practical strategy for controlling asthma [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call