Abstract
A formulation for anisotropic damage is established in the framework of the principle of strain equivalence. The damage variable is still related to the surface density of microcracks and microvoids, and, as its evolution is governed by the plastic strain, it is represented by a second-order tensor and is orthotropic. The coupling of damage with elasticity is expressed in tensor form on the deviatoric part of the stress tensor and in scalar form by its trace on the hydrostatic part. The kinetic law of damage evolution is an extension of the isotropic case. Here the principal components of the damage rate tensor are proportional to the absolute value of the principal components of the plastic strain rate tensor. The proposed damage evolution law does not introduce any other material parameter. Several series of experiments give a good validation of this theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comptes Rendus de l'Academie des Sciences Series IIB Mechanics Physics Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.