Abstract

For many types of graphs, including directed acyclic graphs, undirected graphs, tournament graphs, and graphs with bounded independence number, the shortest path problem is NL-complete. The longest path problem is even NP-complete for many types of graphs, including undirected K 5-minor-free graphs and planar graphs. In the present paper we present logspace algorithms for computing shortest and longest paths in series-parallel graphs where the edges can be directed arbitrarily. The class of series-parallel graphs that we study can be characterized alternatively as the class of K 4-minor-free graphs and also as the class of graphs of tree-width 2. It is well-known that for graphs of bounded tree-width many intractable problems can be solved efficiently, but previous work was focused on finding algorithms with low parallel or sequential time complexity. In contrast, our results concern the space complexity of shortest and longest path problems. In particular, our results imply that for directed graphs of tree-width 2 these problems are L-complete.KeywordsSeries-parallel graphslogspace algorithmsdistance problemlongest path problembounded tree-widthK4-minor-free graphs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.