Abstract
Logo detection methods usually depend on logo shapes and need for training data or a-priori information on the processed images. This limits their effectiveness to real-world applications. In this paper, we tackle these challenges by exploring the textural information. Specifically we propose a novel approach for administrative logo detection based on a fuzzy classification with a multi-fractal texture feature, capable of automatically characterizing texture measures describing logo and non-logo regions. Experimental results, using two real datasets, confirm the feasibility of the proposed method for degraded administrative documents. Extensive comparative evaluations demonstrate the superiority of this approach over the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.