Abstract

The US Department of Energy (DOE) faces an enormous environmental remediation challenge involving highly radioactive wastes at former weapons production facilities. The purpose of this analysis is to focus on equipment acquisition and fleet sizing issues related to transportation of wastes from remediation sites to disposal sites. Planning for the transportation of these wastes must be done with recognition of important uncertainties related to overall quantities of waste to be moved, the rate at which the wastes will be prepared for transport, and the certification of suitable transportation containers for use in the effort. However, deadlines for completion of the effort have already been set by the political process, without much regard for these uncertainties. To address this fleet sizing problem, we have created a robust optimization model that focuses on equipment investment decisions. Through this robust optimization, we illustrate how modeling can be used to explore the effects of uncertainty on the equipment acquisition strategy. The disposition of radioactive wastes from DOE sites is an important illustration of a category of problems where equipment investments must be made under conditions of considerable uncertainty. The methodology illustrated in this paper can be applied to this general class of problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.