Abstract

As an important support of the e-commerce industry, the express delivery industry is particularly important in national development. Low loading rates caused by numerous types of containers and cost increases caused by low loading and unloading efficiency are still remaining issues in the process of goods delivery and packing. This study introduced the pallet with telescopic support height as the middle to address these issues and proposed a distribution scheme based on the constraints of three-dimensional pallet loading with a time window. First, combining the path optimization of the time window and cargo loading, a solution model was established to solve the existing express delivery problem with the lowest total delivery cost and the highest average vehicle loading rate. In addition, the multi-objective problem was transformed through the multi-objective linear weighting method. Second, we cluster the customer nodes. In order to solve the large number of gaps generated by the hierarchy theory, we adopt the descending order of cargo volume as the initial sequence and design the coding and decoding for path optimization and pallet loading, solving the problem through the simulated anneal-genetic algorithm. Finally, the effectiveness of the algorithm is obtained through the comparison with other algorithms and the simple three-dimensional loading and distribution scheme by using examples. It is proved that the optimization of three-dimensional packing for express delivery using pallets as carriers can not only meet the high loading rate but also improve the loading and unloading speed, reduce the time penalty cost, and improve the operability of loading. This paper provides decision reference and method support for path optimization under three-dimensional loading constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.