Abstract
Multi-depot vehicle routing problem with time windows (MDVRPTW) is a valuable practical issue in urban logistics. However, heuristic methods may fail to generate high-quality solutions for massive problems instantly. Thus, this article presents a novel reinforcement learning algorithm integrated with a multi-head attention mechanism and a local search strategy to solve the problem efficiently. The routing optimization was regarded as a vehicle tour generation process and an encoder-decoder was used to generate routes for vehicles departing from different depots iteratively. A multi-head attention strategy was employed for mining complex spatiotemporal correlations within time windows in the encoder. Then, a decoder with multi-agent was designed to generate solutions by optimizing reward and observing transition state. Meanwhile, a local search strategy was employed to improve the quality of solutions. The experiments results demonstrate that the proposed method can significantly outperform traditional methods in effectiveness and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technologies and Systems Approach
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.