Abstract

This paper proposes a forecasting method for court auction information system using logistic regression model with heterogeneity across the multiple round. The goal is to predict whether an individual auction item in a certain round will be sold or not. A simple linear regression and the least angle regression (LARS) containing random effect terms were used to select meaningful variables for our logit model. The link function of the proposed logit model is represented by two bundles of parameters. The former part consists of the parameters whose values do not change over rounds. The latter part has parameters whose values interact with rounds. The observed data corresponding to an appraiser price as well as an intercept term reflecting local characteristics are used without any change. Data that corresponds to all the other parameters is not directly used, but transformed based on similarities between the original item and the surrounding auction items being recommended by the court auction experts. We tested the Bayesian logistic regression by establishing different priors: Dunson’s prior, Gelman’s prior and Ansari’s prior. Dunson’s prior was found to perform the best. Little significant difference was found between the results of the other two priors. These findings indicate that logistic regression taking the heterogeneity of multi-round into account performs better than a one-layered neural network over all time periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.