Abstract

Understanding the mechanics of adaptive evolution requires not only knowing the quantitative genetic bases of the traits of interest but also obtaining accurate measures of the strengths and modes of selection acting on these traits. Most recent empirical studies of multivariate selection have employed multiple linear regression to obtain estimates of the strength of selection. We reconsider the motivation for this approach, paying special attention to the effects of nonnormal traits and fitness measures. We apply an alternative statistical method, logistic regression, to estimate the strength of selection on multiple phenotypic traits. First, we argue that the logistic regression model is more suitable than linear regression for analyzing data from selection studies with dichotomous fitness outcomes. Subsequently, we show that estimates of selection obtained from the logistic regression analyses can be transformed easily to values that directly plug into equations describing adaptive microevolutionary change. Finally, we apply this methodology to two published datasets to demonstrate its utility. Because most statistical packages now provide options to conduct logistic regression analyses, we suggest that this approach should be widely adopted as an analytical tool for empirical studies of multivariate selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call