Abstract
Label propagation (LP) is used in the framework of semi-supervised learning. In this paper, we propose a novel method of logistic label propagation (LLP). The proposed method employs logistic functions for accurately estimating the label values as the posterior probabilities. In LLP, the label of newly input sample is efficiently estimated by using the optimized coefficients in the logistic function, without such recomputation of all label values as in original LP. In the experiments on classification, the proposed method produced more reliable label values at the high degree of confidence than LP and ordinary logistic regression. In addition, even for a small portion of the labeled samples, the error rates by LLP were lower than those by the logistic regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.