Abstract

Present-day healthcare witnesses a growing demand for coordination of patient care. Coordination is needed especially in those cases in which hospitals have structured healthcare into specialty-oriented units, while a substantial portion of patient care is not limited to single units. From a logistic point of view, this multi-disciplinary patient care creates a tension between controlling the hospital’s units, and the need for a control of the patient flow between units. A possible solution is the creation of new units in which different specialties work together for specific groups of patients. A first step in this solution is to identify the salient patient groups in need of multi-disciplinary care. Grouping techniques seem to offer a solution. However, most grouping approaches in medicine are driven by a search for pathophysiological homogeneity. In this paper, we present an alternative logistic-driven grouping approach. The starting point of our approach is a database with medical cases for 3603 patients with peripheral arterial vascular (PAV) diseases. For these medical cases, six basic logistic variables (such as the number of visits to different specialist) are selected. Using these logistic variables, clustering techniques are used to group the medical cases in logistically homogeneous groups. In our approach, the quality of the resulting grouping is not measured by statistical significance, but by (i) the usefulness of the grouping for the creation of new multi-disciplinary units; (ii) how well patients can be selected for treatment in the new units. Given a priori knowledge of a patient (e.g. age, diagnosis), machine learning techniques are employed to induce rules that can be used for the selection of the patients eligible for treatment in the new units. In the paper, we describe the results of the above-proposed methodology for patients with PAV diseases. Two groupings and the accompanied classification rule sets are presented. One grouping is based on all the logistic variables, and another grouping is based on two latent factors found by applying factor analysis. On the basis of the experimental results, we can conclude that it is possible to search for medical logistic homogenous groups (i) that can be characterized by rules based on the aggregated logistic variables; (ii) for which we can formulate rules to predict to which cluster new patients belong.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.