Abstract
The work presents various techniques of the logistic and multinomial-logit modeling with their modifications. These methods are useful for regression modeling with a binary or categorical outcome, structuring in regression and clustering, singular value decomposition and principal component analysis with positive loadings, and numerous other applications. Particularly, these models are employed in the discrete choice modeling and the best-worst scaling known in applied psychology and socio-economics studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.