Abstract

In this paper1 we study admissible consecutions (inference rules) in multi-modal logics with the universal modality. We consider extensions of multi-modal logic S4n augmented with the universal modality. Admissible consecutions form the largest class of rules, under which a logic (as a set of theorems) is closed. We propose an approach based on the context effective finite model property. Theorem 7, the main result of the paper, gives sufficient conditions for decidability of admissible consecutions in our logics. This theorem also provides an explicit algorithm for recognizing such consecutions. Some applications to particular logics with the universal modality are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.