Abstract
Let K be a variety of (commutative, integral) residuated lattices. The substructural logic usually associated with K is an algebraizable logic that has K as its equivalent algebraic semantics, and is a logic that preserves truth, i.e., 1 is the only truth value preserved by the inferences of the logic. In this paper we introduce another logic associated with K, namely the logic that preserves degrees of truth, in the sense that it preserves lower bounds of truth values in inferences. We study this second logic mainly from the point of view of abstract algebraic logic. We determine its algebraic models and we classify it in the Leibniz and the Frege hierarchies: we show that it is always fully selfextensional, that for most varieties K it is non-protoalgebraic, and that it is algebraizable if and only K is a variety of generalized Heyting algebras, in which case it coincides with the logic that preserves truth. We also characterize the new logic in three ways: by a Hilbert style axiomatic system, by a Gentzen style sequent calculus, and by a set of conditions on its closure operator. Concerning the relation between the two logics, we prove that the truth preserving logic is the purely inferential extension of the one that preserves degrees of truth with either the rule of Modus Ponens or the rule of Adjunction for the fusion connective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.