Abstract
AbstractThis paper investigates formal logics for reasoning about determinacy and independence. Propositional Dependence Logic${\cal D}$and Propositional Independence Logic${\cal I}$are recently developed logical systems, based on team semantics, that provide a framework for such reasoning tasks. We introduce two new logics${{\cal L}_D}$and${{\cal L}_{\,I\,}}$, based on Kripke semantics, and propose them as alternatives for${\cal D}$and${\cal I}$, respectively. We analyse the relative expressive powers of these four logics and discuss the way these systems relate to natural language. We argue that${{\cal L}_D}$and${{\cal L}_{\,I\,}}$naturally resolve a range of interpretational problems that arise in${\cal D}$and${\cal I}$. We also obtain sound and complete axiomatizations for${{\cal L}_D}$and${{\cal L}_{\,I\,}}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.