Abstract

Random variables are declared complete whenever they must not admit missing data. Intuitively, the larger the set of complete random variables the closer the implication of saturated conditional independence statements is approximated. Two different notions of implication are studied. In the classical notion, a statement is implied jointly by a set of statements, the fixed set of random variables and its subset of complete random variables. For the notion of pure implication the set of random variables is left undetermined. A first axiomatization for the classical notion is established that distinguishes purely implied from classically implied statements. Axiomatic, algorithmic and logical characterizations of pure implication are established. The latter appeal to applications in which the existence of random variables is uncertain, for example, when statements are integrated from different sources, when random variables are unknown or when they shall remain hidden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.