Abstract

This paper presents a review of advances in the mathematical programming approach to discrete/continuous optimization problems. We first present a brief review of MILP and MINLP for the case when these problems are modeled with algebraic equations and inequalities. Since algebraic representations have some limitations such as difficulty of formulation and numerical singularities for the nonlinear case, we consider logic-based modeling as an alternative approach, particularly Generalized Disjunctive Programming (GDP), which the authors have extensively investigated over the last few years. Solution strategies for GDP models are reviewed, including the continuous relaxation of the disjunctive constraints. Also, we briefly review a hybrid model that integrates disjunctive programming and mixed-integer programming. Finally, the global optimization of nonconvex GDP problems is discussed through a two-level branch and bound procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.