Abstract

In this work, the logic stochastic resonance (LSR) phenomenon in a class of stochastic triple-well potential systems is investigated. Approximate Fokker-Planck equation is first obtained by using decoupling approximation. Then, we show that LSR can be successfully induced by additive or multiplicative Gaussian colored noise in some cases. In the absence of internal noise, LSR implementation seems impossible for a = 0 (The parameter a characterizes the depth of the potential well) since the two side wells are so deep that the particle cannot hop over the barrier into the middle well when the input signal is 0. With the increasing of a, the optimal noise band to yield flexible logic gates appears and moves to higher level of noise as the correlation time of noise increases. Compared with the Gaussian white noise, the reliable region in the parameter plane of potential depth parameter a and additive noise strength D first expands and then shrinks with increasing noise color. Furthermore, the effects of multiplicative Gaussian colored noise on LSR are investigated. It was found that the flexible and reliable logic behavior can be yielded for a = 0 due to the fact that the multiplicative Gaussian colored noise strongly affects the shape of the potential function. With the increasing of a, i.e., a = 0.25, multiplicative Gaussian white noise cannot yield desired logic behavior. Fortunately, LSR can also be expected by adjusting the correlation time of Gaussian colored noise. It can also be observed that the reliable region in the parameter plane of potential depth parameter a and multiplicative noise strength Q is small for the case of Gaussian white noise and it becomes larger with the increasing of noise color.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.