Abstract

Appel and McAllester's "step-indexed" logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. However, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadi's logic for parametricity, but also supports recursively defined relations by means of the modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very modal model" paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.