Abstract

In informal mathematical usage we often reason about languages involving binding of object-variables. We find ourselves writing assertions involving meta-variables and capture-avoidance constraints on where object-variables can and cannot occur free. Formalising such assertions is problematic because the standard logical frameworks cannot express capture-avoidance constraints directly. In this thesis we make the case for extending logical frameworks with metavariables and capture-avoidance constraints. We use nominal techniques that allow for a direct formalisation of meta-level assertions, while remaining close to informal practice. Our focus is on derivability and we show that our derivation rules support the following key features of meta-level reasoning: • instantiation of meta-variables, by means of capturing substitution of terms for meta-variables; • ??-renaming of object-variables and capture-avoiding substitution of terms for object-variables in the presence of meta-variables; • generation of fresh object-variables inside a derivation. We apply our nominal techniques to the following two logical frameworks: • Equational logic. We investigate proof-theoretical properties, give a semantics in nominal sets and compare the notion of ??-renaming to existing notions of ??-equivalence with meta-variables. We also provide an axiomatisation of capture-avoiding substitution, and show that it is sound and complete with respect to the usual notion of capture-avoiding substitution. • First-order logic with equality. We provide a sequent calculus with metavariables and capture-avoidance constraints, and show that it represents schemas of derivations in first-order logic. We also show how we can axiomatise this notion of derivability in the calculus for equational logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.