Abstract
AbstractIn this paper we develop a method for finding, under general conditions, explicit and highly uniform rates of convergence for the Picard iteration sequences for selfmaps on bounded metric spaces from ineffective proofs of convergence to a unique fixed point. We are able to extract full rates of convergence by extending the use of a logical metatheorem recently proved by Kohlenbach. In recent case studies we were able to find such explicit rates of convergence in two concrete cases. Our novel method now provides an explanation in logical terms for these findings. This amounts, loosely speaking, to general conditions under which we in this specific setting can transform a ∀∃∀-sentence into a ∀∃-sentence via an argument involving product spaces. This reduction in logical complexity allows us to use the existing machinery to extract quantitative bounds of the sort we need.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.