Abstract

We address the problem of reducing the size of Craig’s interpolants used in SAT-based model checking. Craig’s interpolants are AND-OR circuits, generated by post-processing refutation proofs of SAT solvers. Being highly redundant, their compaction is typically tackled by reducing the proof graph and/or by exploiting standard logic synthesis techniques. In this paper, we propose a set of ad-hoc logic synthesis functions that, revisiting known logic synthesis approaches, specifically address speed and scalability. Though general and not restricted to interpolants, these techniques target the main sources of redundancy in combinational circuits. This paper includes an experimental evaluation, showing the benefits of the proposed techniques, on a set of benchmark interpolants arising from hardware model checking problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.