Abstract

AbstractWe investigate mca-programs, that is, logic programs with clauses built of monotone cardinality atoms of the form kX, where k is a non-negative integer and X is a finite set of propositional atoms. We develop a theory of mca-programs. We demonstrate that the operational concept of the one-step provability operator generalizes to mca-programs, but the generalization involves nondeterminism. Our main results show that the formalism of mca-programs is a common generalization of (1) normal logic programming with its semantics of models, supported models and stable models, (2) logic programming with cardinality atoms and with the semantics of stable models, as defined by Niemelä, Simons and Soininen, and (3) of disjunctive logic programming with the possible-model semantics of Sakama and Inoue.KeywordsLogic ProgramLogic ProgrammingStable ModelNormal LogicPropositional AtomThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call