Abstract

Graphs of the single-step operator for first-order logic programs—displayed in the real plane—exhibit self-similar structures known from topological dynamics, i.e., they appear to be fractals, or more precisely, attractors of iterated function systems. We show that this observation can be made mathematically precise. In particular, we give conditions which ensure that those graphs coincide with attractors of suitably chosen iterated function systems, and conditions which allow the approximation of such graphs by iterated function systems or by fractal interpolation. Since iterated function systems can easily be encoded using recurrent radial basis function networks, we eventually obtain connectionist systems which approximate logic programs in the presence of function symbols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call