Abstract

The logic of proofs is known to be complete for the semantics of proofs in Peano Arithmetic PA. In this paper we present a refinement of this theorem, we will show that we can assure that all the operations on proofs can be realized by feasible, that is PTIME-computable, functions. In particular we will show that the logic of proofs is complete for the semantics of proofs in Buss' bounded arithmetic S$^{1}_{2}$ . In view of recent applications of the Logic of Proofs in epistemology this result shows that explicit knowledge in the propositional framework can be made computationally feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.