Abstract

Certain axiomatic systems involve more than one category of fundamental objects; for example, points, lines, and planes in geometry; individuals, classes of individuals, etc. in the theory of types or in predicate calculi of orders higher than one. It is natural to use variables of different kinds with their ranges respectively restricted to different categories of objects, and to assume as substructure the usual quantification theory (the restricted predicate calculus) for each of the various kinds of variables together with the usual theory of truth functions for the formulas of the system. An axiomatic theory set up in this manner will be called many-sorted. We shall refer to the theory of truth functions and quantifiers in it as its (many-sorted) elementary logic, and call the primitive symbols and axioms (including axiom schemata) the proper primitive symbols and proper axioms of the system. Our purpose in this paper is to investigate the many-sorted systems and their elementary logics.Among the proper primitive symbols of a many-sorted system Tn (n = 2, …, ω) there may be included symbols of some or all of the following kinds: (1) predicates denoting the properties and relations treated in the system; (2) functors denoting the functions treated in the system; (3) constant names for certain objects of the system. We may either take as primitive or define a predicate denoting the identity relation in Tn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call