Abstract

It is known that a quasimetric space can be represented by means of a metric space; the points of the former space become closed subsets of the latter one, and the role of the quasimetric is assumed by the Hausdorff quasidistance. In this paper, we show that, in a slightly more special context, a sharpened version of this representation theorem holds. Namely, we assume a quasimetric to fulfil separability in the original sense due to Wilson. Then any quasimetric space can be represented by means of a metric space such that distinct points are assigned disjoint closed subsets.This result is tailored to the solution of an open problem from the area of approximate reasoning. Following the lines of E. Ruspini’s work, the Logic of Approximate Entailment (mathsf {LAE}) is based on a graded version of the classical entailment relation. We present a proof calculus for mathsf {LAE} and show its completeness with regard to finite theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.