Abstract

In this study, we applied ferroelectrics to the gate stack of Field Effect Transistors (FETs) with a 2D transition-metal dichalcogenide (TMDC) channel, actively researching for sub-2nm technology node implementation. Subsequently, we analyzed the circuit characteristics of Logic-in-Memory (LiM) operation and utilized LiM features after applying ferroelectrics to achieve a single-device configuration. Based on well-calibrated simulations, we performed compact modeling in a circuit simulator to depict the temperature-dependent electrical characteristics of ferroelectric FETs with a double gate structure and 2D channel (DG 2D-FeFET) in sub-2nm dimensions. Through this, we have confirmed that the 2D FeFET-based LiM technology, designed for the 2 nm technology node, exhibits superior characteristics in terms of delay, power/energy consumption, and circuit area under all temperature conditions, compared to the conventional CMOS technology based on 2D FETs. This verification serves as proof of the future technological potential of 2D-FeFET in extremely scaled-down technology nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call